A boost for research, and a fitting tribute to two strong women

Investing in the future of women’s health research, a couple honors their mothers

Norma Weinberg Spungen and the late Joan Lebson Bildner knew each other as loving in-laws. Spungen’s daughter Elisa and Bildner’s son Robert, both Yale College graduates, married in 1982 and raised a family together. But the two women had more in common than family. Elisa Spungen Bildner describes the women’s relationship as “extremely strong leaders and role models.” Bildner, Yale College graduate and Robert Bildner’s mother, married Norma Weinberg Spungen, YC ’46, in 1982. The couple honors their mothers by providing a significant gift to endow a professorship at the School of Medicine in their names. The Bildners’ gift, complementing funds donated by an anonymous foundation and others, establishes the Norma Weinberg Spungen and Joan Lebson Bildner Professorship. The endowed chair is intended to support a ladder faculty member whose work is devoted to advancing women’s health and studying gender differences in health and disease as director of Women’s Health Research at Yale (WHRy). That the professorship honors two strong women is fitting: since its establishment in 1998, WHRY has worked steadfastly to remedy what its founding director, Carolyn M. Mazure, Ph.D., sees as one of the largest shortcomings in medical research: “For many years, scientists in almost every area of human disease conducted their research on populations that were largely male,” Mazure says. One study in the 1970s, for example, examined the role of estrogen in reducing risks for coronary heart disease: the sample included 8,431 men, but no women. Even after 1993, when the National Institutes of Health began requiring investigators to include women, researchers often have not analyzed results by gender. “The fact is that women and men have different risk factors for disease,” Mazure says. “Responses to a given treatment can vary by gender, and prevention strategies often need to be gender-specific.” The Bildner’s gift affirms WHRY’s 15-year campaign to change a dominant paradigm in health research. Established to investigate previously unstudied areas in women’s health research, the Norma Weinberg Spungen and Joan Lebson Bildners’ gift, complementing funds donated by an anonymous foundation, reinforce the commitment to furthering women’s health research.

Cell biology chair receives Nobel Prize

Nobelist elucidated how information is conveyed in and between cells

James E. Rothman, Ph.D., the Fergus F. Wallace Professor of Biomedical Sciences, chair of the Department of Cell Biology, professor of chemistry, and director of the Nanobiology Institute on Yale’s West Campus, is one of three winners of the 2013 Nobel Prize in physiology or medicine. Rothman is one of the world’s foremost experts on membrane trafficking, the means by which proteins and other materials are transported within and between cells. The prize highlights his contributions to the understanding of exocytosis, a form of trafficking in which spherical sacs called vesicles fuse with cell membranes to deliver their contents outside the cell.

“This is fitting recognition of Jim Rothman’s brave, innovative research, which has provided new insights into a fundamental cellular process and has important implications for medical research,” Mazure says. The 2013 Nobel Prize in physiology or medicine honors James Rothman’s seminal contributions to the understanding of transport systems within and between cells.

‘Love and respect’ for library prompt an alumnus’s gift

At 85, Stanley Simbonis, M.D., a 1957 graduate of Yale School of Medicine (YSM), can recall his medical school days with enviable sharp precision. Of his experience with the “Yale System” of medical education, which prizes students’ independence and their original research, he says: “At Yale, you know what you have to do. They treat you like adults.”

But Simbonis fondest words are reserved for YSM’s Harvey Cushing/John Hay Whitney Medical Library, an institution that has long played a large role in his life. As a medical student, Simbonis took a year off to do research, and spent a good deal of time in what was then known as the Yale Medical Library. Almost half a century later, in 2003, he became one of the library’s 16 elected trustees, a position he still holds.

Now, in a gesture that reflects his debt of gratitude to Yale and his fundamental regard for the library’s role in the life of YSM, Simbonis has made a gift of more than $1.1 million in annuities, whose income will be available for use after his death at the discretion of the library’s trustees.

INSIDE THIS ISSUE

2 Lifelines
Richard Edelson’s research on the immune system’s response to a deadly skin cancer brings a success story full circle.

3 Capitalizing on Yale’s culture
A unique cross-campus collaboration results in a new technique for delivering cancer drugs to the brain.

5 Nursing school heads west
Moving to a state-of-the-art facility, the School of Nursing is the first major educational program on Yale’s West Campus.

ALSO

Advances, pp. 3, 5
Out & About, p. 4
Non-Profit Org.
U. S. Postage
PAID
New Haven, CT
Permit No. 516
www.medicineatyale.org
Coming full circle to beat cancer

Working to curb a fatal cancer, and building on a precursor’s work

Richard L. Edelson, m.d., describes the workings of the immune system as “a huge, complex symphony.” Though not a musician, Edelson, chair and the Aaron B. and Marguerite R. Lerner Professor of Dermatology, has a conductor’s appreciation for the harmonious way the body mounts immune responses to cancer, and the discord that results when these attempts fail.

Edelson’s efforts to translate basic research into clinical practice have not only clarified how the immune system’s crucial sentinels, T cells, work, but also helped transform cutaneous T cell lymphoma (cTCL), once a devastatingly fatal disease, into one that now rarely claims patients’ lives.

The cancer, which first appears as a simple rash and then spreads from the skin to other organs, used to have a median survival of only five years. Now, due to early diagnosis and new treatments, including a technique developed by Edelson, more than 98 percent of patients survive. Coincidentally, the path to an effective treatment began at Yale School of Medicine (ysm) when the late Aaron B. Lerner, m.d., ph.d., discovered that the naturally occurring chemical B mop was a potent chemotherapeutic. As a member of ysm’s Class of 1970, Edelson didn’t work with Lerner, but their paths are remarkably intertwined.

After an internship in internal medicine at the University of Chicago’s Pritzker School of Medicine, Edelson began a fellowship at the National Institutes of Health (nih), and was there in 1972, the year human T cells were discovered. At the nih, Edelson found that a group of seemingly disparate diseases were actually all T cell cancers. “The entity was renamed cutaneous T cell lymphoma. That’s when my career began,” he says.

Before 1972, doctors encountering cTCL knew they were dealing with a white blood cancer, but they didn’t know the cell type, or how malignant cells evolved from normal cells. Following the identification of T cells, an understanding of T cell biology and cTCL improved in parallel, and Edelson’s research over the years clarified the links between cTCL and the immune system.

In 1982, as a professor of dermatology at Columbia University’s College of Physicians and Surgeons, Edelson and colleagues made a new discovery. B mop was known to be effective for psoriasis patients after being activated by ultraviolet (uv) light. After giving cTCL patients B mop and passing their blood through a machine that zapped malignant cells with uv light, Edelson’s team found that the light-exposed cells effectively became an anti-cancer vaccine.

“In the first patient we treated, the disease disappeared,” he says. The team later concluded that the treatment had immunized patients against the cancer.

The light treatment, called extracorporeal photochemotherapy (ecp), became the first FDA-approved cancer immunotherapy in 1988. Ecp is now used around the world, not only to treat cTCL, but also in cases of organ transplant rejection and graft-versus-host disease following bone marrow transplants. The advance also introduced a new therapeutic principle: “The immune system is important in initial protection from that cancer, but by the time cancer is clinically evident, the immune system has been silenced,” Edelson says.

With Edelson’s return to ysm in 1986 to succeed Lerner as chair of the Department of Dermatology, the cTCL success story had come full circle. Ysm remains a major center for ecp therapy, as well as research on how uv triggers the immune system. “At Yale, we train doctors to be clinicians who are dynamically involved in pushing their fields forward,” Edelson says. “That’s the kind of doctor I try to be.”

New transplant chief is champion for organ donation

David C. Mulligan, m.d., an acclaimed abdominal organ transplant surgeon, has been appointed chair of the Section of Transplantation at Yale University Medical Center and Immunology and professor of surgery at the School of Medicine, and director of the Yale-New Haven Transplantation Center (YNHtC) at Yale-New Haven Hospital.

Mulligan comes to Yale from Mayo Clinic in Arizona, where he helped establish the clinic’s solid organ transplant program. A champion for organ donations on a national scale, Mulligan is also a liver, kidney, and pancreas transplant specialist with international acclaim for his work in living donor liver transplantation.

Mulligan earned his m.d. at the University of Louisville School of Medicine (ULSM) and completed surgical residencies at ULSM and Case Western Reserve University (CWRU). After a fellowship in multi-organ transplantation at Baylor University Medical Center, he served on the faculty at CWRU, and was director of liver transplantation at University Hospitals of Cleveland before joining Mayo Clinic in Arizona.

Mulligan succeeds Suku H. Emre, M.D., professor of surgery and pediatrics, a renowned adult and pediatric abdominal organ transplant surgeon credited with transforming Yale’s transplant program into a regional leader in the evaluation and treatment of liver disease.

Health literacy expert is new head of Physician Assistant Program

James A. Van Rhee, m.s., pa-c, has joined the School of Medicine as director of the Physician Associate (PA) Program. Van Rhee comes to Yale from Northwestern University Feinberg School of Medicine, where he was founding director of its Physician Assistant Program.

Van Rhee’s academic career has also included leadership roles in the PA Programs at Grand Valley State University (gvsu) in Michigan, Western Michigan University, and Wake Forest University, where he was named first chair of the Department of Physician Assistant Studies in 2006.

Throughout his academic career Van Rhee has maintained an active clinical presence, working in internal medicine and oncology. For 10 years he has served as project director for the Physician Assistant Clinical Knowledge and Rating Assessment Tool (packrat) exam, and has been a site visitor for the Accreditation Review Commission on Physician Assistant Education for more than 10 years, and is currently chair of the commission. Among other grants, in 2007 Van Rhee served as co-principal investigator on a three-year Health Resources and Services Administration training grant to develop a health literacy curriculum for PA students.

Van Rhee received his b.s. in medical technology from GVSU and his pa-c degree from the University of Iowa’s Carver College of Medicine. He holds an m.s. in PA practice from Roosevelt and Franklin University of Medicine and Science in North Chicago, Ill. He succeeds Interim Director David Brissette, M.S., PA-c, assistant professor in the PA Program.
Scientists with diverse skills joined forces on a cross-campus collaboration that may change the way brain cancer is treated

Brain cancer—a devastating diagnosis in itself—can also be a beacon for its progress in understanding and chemotherapy and radiotherapy, patients with glioblastoma multiforme (GBM), the primary type of malignant brain tumor that affects 15,000 people in the United States annually, may survive only little over a year, and can suffer tumor recurrence in virtually the same brain region. Now, work combining the unique complementary skills of a neurosurgeon, a bioengineer, and a nanomedicine and stem cell expert has led to a new treatment for GBM that has shown great promise in animal studies. The Yale team reported on their breakthrough online on July 1 in the Proceedings of the National Academy of Sciences.

As leader of Yale Cancer Center (YCC’s) Brain Tumor Program, Joseph M. Piepmeyer, M.D., M.B.A., NewYork-Grace Professor of Neurosurgery, has devoted years to patient care and research to combat GBM. Recently, he was involved in a clinical trial in which drugs were delivered in solution to tumors by pumping through catheters. “It was a wonderful idea, but it didn’t work,” Piepmeyer says. “The liquid flowed away, into the spinal fluid or blood, and dissipated once we stopped infusion.” The delivery problem is central to treating any disease of the organ that is beyond the blood-brain barrier, which protects the sensitive brain tissue from circulating blood. It keeps out bacteria, but also prevents orally or intravenously delivered drugs from getting to where they are needed most, in the case of GBM.

Across campus, W. Mark Saltzman, Ph.D., chair and Goizueta Foundation Professor of Biomedical Engineering, had been developing biodegradable materials that could be loaded with chemotherapeutic drugs and placed in the brain after tumor surgery. Saltzman, also professor of cellular and molecular physiology and of chemical engineering, was one of the developers of the Gliadel wafer, a standard-of-care drug delivery system that can extend survival by some months in GBM. The presence of a structure or casing, like the wafer’s, is critical because it prevents drugs from dissipating into circulation or being metabolized too quickly. The device’s effects, however, are only modest, since drugs fail to diffuse from the wafer into the dense brain tissue. The solution, explains Saltzman, is an engineered nanoparticle about the size of a virus that encapsulates the drug and prevents it from being degraded.

With a well-designed vehicle, the highway into the brain was obvious: Piepmeyer’s pump infusion system, known as convection-enhanced delivery, or ced. “Our innovation was to combine the two technologies,” says Saltzman. “ced can penetrate through tissue, and the nanoparticles control where the drug ends up and ensure its slow release.” The particles are small enough to reach interstitial spaces in the brain. Made of the same material as dissolving sutures, they are not aggregate, and eventually degrade.

A novel drug delivery system isn’t sufficient by itself in the case of GBM, however. “The tumors tend to be in infiltrative and particularly resistant to radiotherapy and drugs, in part because of something that wasn’t recognized until 2003: even solid tumors have what are called cancer stem cells. These are the root of tumor development, and the reason we are working so hard to do research in this area,” says Jiangbing Zhou, Ph.D., assistant professor of neurosurgery and biomedical engineering, who studied stem cells and cellular and molecular physiology and of chemical engineering. Zhou are pioneering the use of nanoparticles to deliver drugs to treat brain cancer. (At left) representative drug distributions for two state-of-the-art convection-enhanced delivery (ced) based implant systems, such as the Gliadel wafer; (b) convection-enhanced delivery (ced) of drug solutions; (c) the Yale team’s technique, which involves ced of drug-loaded nanomaterials.

Saltzman, Piepmeyer, and colleagues are now preparing for a small human clinical trial, to take place at YCC next year. By monitoring patients with magnetic resonance imaging (mri), they will be able to observe drug distribution and longevity after delivery. Evaluating the safety and efficacy of the nanoparticle delivery mechanism is critical, they say as is the selection of an optimal drug.

Saltzman commends Yale’s “remarkable environment” for enabling the kind of collaborative translational research that led to this new GBM treatment: “In most places, it is not easy for biomedical engineers to work this closely with clinical scientists. What we’ve done can only happen at a few special places, like Yale,” he says.

Creating tomorrow’s cures

At the center of Yale School of Medicine (ysm)’s work is the research pursued by faculty and students, including the innovative research in brain cancer described here. Ysm faculty members are renowned for their creative approaches to the most vexing biomedical questions, and for their pursuit of answers that will shed light on novel therapies and improve human health.

Funds directed to support research are especially vital to the fulfillment of ysm’s mission to expand knowledge in the basic and clinical sciences. These funds stimulate the education of tomorrow’s scientific leaders and pave the way for outstanding care and cutting-edge therapies. Endowed gifts are central to ysm’s ability to maintain its tradition of academic excellence, its strong programs, and the intellectual diversity of its faculty and students. Through Professorships, Teaching Funds, Scholarships, and Fellowships, the men and women at ysm sustain the School’s vitality, keeping it at the forefront of education, research, and patient care. For more information on creating an endowed fund, contact zuzsanna somogyi, interim director for medical development, at 203-436-8599 or at zuzsanna.somogyi@yale.edu.

Fighting brain cancer with nanomedicine

As the C. elegans worm grows during its adult life, increases in a hundred times in size, the neurons that stretch the length of its body grow, too. Until recently, scientists haven’t known what keeps synapses—the junctions between neurons in their correct positions during this process. Now, research by Yale scientists offers clues. By screening genetically mutated worms to find animals that maintain synaptic positions incorrectly, a team led by Associate Professor of Cell Biology Daniel A. Colón-Ramos, Ph.D., found that the gene cima-1 is vital for proper synaptic maintenance. Further experiments revealed that cima-1 encodes a protein found not in neurons themselves, but in epidermal cells. The protein, the team reported in the July 18 issue of Cell, mediates the interactions between epidermal cells and the glial cells that contact neurons at synapses. The finding suggests that glial cell position is vital for maintaining synaptic positions during growth, and could provide clues to how synaptic positions are maintained during growth in humans.
August 6 The Yale-ucl (University College London) Collaborative held its third annual Yale-ucl Poetry Contest, open to medical and engineering students at both universities. Lorenzo Sewanan ‘20 (left), a student in the M.D./Ph.D. Program who placed first in this year’s contest, with Dean and Ensign Professor of Pediatrics Robert J. Alpern, M.D.

August 15 At the White Coat Ceremony, an annual event at which incoming medical students receive physicians’ jackets, the School of Medicine formally welcomed the 100 members of the Class of 2017. 1. George Lister, M.D., ’73, chair and Jean McLean Wallace Professor of Pediatrics and physician-in-chief at Yale-New Haven Children’s Hospital, delivered this year’s keynote speech. 2. (From left) Anand Gopal, Lister, and Laura R. Ment, M.D., professor of pediatrics and neurology and associate dean for admissions and financial aid. 3. (From left) Heide Kuang. Zhenhui (Jane) Xu, and Ava Yap. 4. Zainab Jaji (left) and Neeka Nwachukwu. 5. Juliana Burk-Krauss and her mother, Marlene Krauss. 6. Jocelyn Malkin, M.D., ’32 (left), and her granddaughter Hannah Zornow.

Video “Starting a life in medicine: Yale’s 2013 White Coat Ceremony,” Available at youtube.com/yalemedicine

OUT & ABOUT

May 29 Connecticut Mental Health Center (CMHC) faculty and trainees toured the Connecticut Valley Hospital (CVH) in Middletown, Conn. (Front) Frank S.K. Appiah, Jr., M.D., Ph.D., public psychiatry fellow (Center row, from left) Paul Park, Psy.D., psychologist at Rutgers Biomedical and Health Sciences; Brandeis Green, Ph.D., psychologist at the Atlanta VA Medical Center; Jeanne L. Steiner, D.O., associate professor of psychiatry and medical director of the CMHC; Andres B. Barkil-Oteo, M.D., M.Sc., assistant professor of psychiatry; Jai Shah, M.D., research fellow in psychiatry at McGill University’s Faculty of Medicine (Rear, from left) Joseph A. Cherepan, Ph.D., psychologist at CVH; David Howe, LCSW, director of recovery and consumer affairs at CVH, Thomas S. Pisano, M.D., chief of professional services at CVH; Ranjit Bhagwat, Ph.D., postdoctoral resident at the Stratton VA Medical Center in Albany, N.Y.; and Thomas Styrae, Ph.D., associate professor of psychiatry.

August 12 Friends and colleagues gathered for a Send-Off Party to bid fond farewells to Pete Farley, the editor of Medicine@Yale since its creation in 2005. Pictured with Farley are Terry Dagradi (left), photographer with Yale Photo Design, and Farley’s wife, Kerry L. Falvey, chief of staff in the School of Medicine Dean’s Office and author of Medicine at Yale. The First 200 Years, published in 2010 to mark the medical school’s bicentennial.

August 19 At the White Coat Ceremony, an annual event at which incoming medical students receive physicians’ jackets, the School of Medicine formally welcomed the 100 members of the Class of 2017. 1. George Lister, M.D., ’73, chair and Jean McLean Wallace Professor of Pediatrics and physician-in-chief at Yale-New Haven Children’s Hospital, delivered this year’s keynote speech. 2. (From left) Anand Gopal, Lister, and Laura R. Ment, M.D., professor of pediatrics and neurology and associate dean for admissions and financial aid. 3. (From left) Heide Kuang. Zhenhui (Jane) Xu, and Ava Yap. 4. Zainab Jaji (left) and Neeka Nwachukwu. 5. Juliana Burk-Krauss and her mother, Marlene Krauss. 6. Jocelyn Malkin, M.D., ’32 (left), and her granddaughter Hannah Zornow.

Video “Starting a life in medicine: Yale’s 2013 White Coat Ceremony,” Available at youtube.com/yalemedicine

June 4 As part of a six-week elective abroad in Chiapas, Mexico, third-year psychiatry resident Guillermo Valdés, M.D., MBA, developed a non-pharmacologic intervention for the treatment of major depressive disorder, lectured to local general practitioners about basic concepts in psychiatric care, and saw patients.
New metric shows diabetes drug works

In type 1 diabetes (T1D), immune cells gradually attack and kill off the pancreas’s insulin-producing β-cells. Therapies to moderate this autoimmune destruction in recent-onset T1D have shown success, but scientists haven’t known whether these therapies were preventing β-cell killing, or merely restoring some β-cell function.

When β-cells die, they release modified versions of the insulin DNA (INS DNA) into the blood. Knowing this, Yale researchers recently devised a new method for measuring β-cell death in vivo: directly measuring the modified INS DNA in the blood serum. The researchers successfully used this method to study diabetic mice, and recently published INS DNA in human patients with T1D in a phase 2 clinical trial of the monoclonal anti-body drug teplizumab.

Teplizumab, when given in two courses one year apart, significantly reduced β-cell loss in patients with early-onset T1D, the team reported in the May issue of Diabetes. The level of INS DNA at year two was, on average, 75 percent higher in the teplizumab group, which tracks and categorizes the radiation given by CT scanners in the lowest doses of any academic hospital in the country and types of pediatric radiation.

The numbers are very impressive,” says T. Rob Goodman, M.B., B. Chir., interim chair and professor of diagnostic radiology and chief of pediatric diagnostic imaging at Vhich. “We’ve more than halved the number of CT scans done on children with the same age groups and types of pediatric radiation.

As YSN grew, limited room at 100 Church Street South meant that space for clinical instruction activities was often multipurpose and shared. The new facility, in contrast, offers separate rooms designed specifically for assessment labs, task training, exams, and simulation. There is also a section, with its own entrance for patients, devoted to clini-cal research studies in cardiology and sleep disorders, and to Yale’s renowned Minding the Baby program, a community-based intervention that affords underprivi-leged mothers nursing and mental health services during pregnancy and after childbirth.

For nursing school, westward expansion

Yale’s West Campus offers state-of-the-art technology, collaboration-friendly design, and space customized for clinical instruction

Since its acquisition from Bayer Pharmaceuticals in 2007, Yale’s West Campus as the 16-acre facility on the Orange-Stone South Haven border is now known, has buzzed quietly with activity. Gradually, programs have moved there, taking advantage of an abundance of highly configurable space: the West Campus houses several flourishing research centers, core facilities, and art conserva-tion programs. That buzz is now grow-ing louder: over the summer, the Yale School of Nursing (YSN) relocated to the West Campus from 100 Church Street South, on the outskirts of Yale’s medical campus. “The facility at 100 Church Street [South] met our needs for almost 20 years, but would have been difficult to reconfigure to meet our current and future needs,” says YSN Dean Margaret Grey, Dr. Phil., R.N., the Annie Good-rich Professor of Nursing. “Our new building is well equipped for faculty, students, and staff to teach and learn, conduct research, and collaborate with many colleagues here on the West Cam-pus as well as across the University.”

YSN’s new premises are almost 50 percent bigger than its former headquarters. The new facility, which is airy and filled with natural light, has undergone extensive renovations and has been designed to foster a spirit of collaboration. It contains numerous spaces designed for student-student or student-faculty interaction, including a lounge-like space on the first floor, surrounded by smaller rooms designed for group study. Cushioned benches and whiteboards line the hallways to encourage discussion. State-of-the-art classrooms feature touch-screen controls, multiple monitors, and video conferencing capabilities and outlets for every student.

YSN was founded in 1923 with an initial grant of $150,000 from the Rockefeller Foundation. It was the first independent university-based school for the ed-uca-tion of nurses in the U.S., and the first nursing school not subordinate to an existing university department. The school, one of Yale’s 10 professional schools, is ranked highly among nursing schools receiving funding from the National Institutes of Health.

Yale physicians lead the way in making CT scans safer for children

Computerized tomography (CT) scanning involves taking X-rays from a rotating camera and feeding the results to a powerful computer to create cross-sectional views of organs in the body. The procedure—simple and painless, taking less than 10 minutes—allows doctors to detect injuries and diseases that don’t show up on standard X-rays. CT scans save countless lives and prevent many misdiagnoses and unnecessary sur-geries. Given CT’s advantages, it’s no surprise that its use has surged in the last two decades.

But the technology’s diagnostic power carries a cost: a CT scan can expose a patient to 100 to 500 times the amount of radiation she would get in an X-ray of the same region of the body. Fortunately, that picture may be changing, especially for children, whose smaller, rapidly growing bodies make them even more susceptible than adults to radiation-induced can-cer. In data compiled by the American College of Radiology’s Dose Index Registry, which tracks and categorizes the radiation given by CT scanners in the lowest doses of any academic hospital in the country in the last two decades.

The influx of 450 students, faculty and staff has nearly doubled the population of the West Campus. YSN is the first major educational program to be located there. Says Scott A. Strobel, Ph.D., Henry Ford II Professor of Molecu-lar Biophysics and Biochemistry and vice president of West Campus planning and program development: “The addition of YSN to this already thriving community aligns with the vision of Yale’s West Campus to strengthen science, medicine, and engineering at Yale. It also means that the School of Nursing will finally have a facility that matches the excellence of its program.”

Although students, faculty, and staff began using the new facility in August, the building was formally dedicated on Oc-tober 4, on the occasion of YSN’s 90th anniversary celebration.
not all imaging centers have changed their approach. A study published in June in the journal Jama Pediatrics reported that 10% of the esimated 4 million CT scans given every year to U.S. children under age 15, a third are unnecessary and may lead to 5,000 cases of cancer. Still, doctors say that in some cases a CT scan is the best test. “If we can get the necessary information from a plain X-ray or an MRI, we forego the CT scan,” says Cordelia W. Carter, M.D., assistant professor of orthopaedics and rehabilitation and clinical professor of surgery. “But for other patterns, such as a common ankle fracture, the CT scan provides the amount of detail a surgeon needs. Even consultants, “we are very aware of the increased radiation associated with CT scans, and we do whatever we can to minimize the patient’s exposure,” says Simbonis. Goodness expects the CT to drop further as MRI, which emits no radiation, becomes the standard tool for many diagnoses. His campaign to lower radiation doses at VHCCH has been so successful that he now sometimes finds himself urging clinicians and parents not to avoid CT in the correct clinical setting. “If the suspicion is high that a child has a fracture, the CT scan is the best test,” he says. Some orthopaedic centers should be reassured that the CT radiation doses at Yale are the lowest in the country and doing the scan is what’s best for the patient.”

April 2012

In the New York University lab of biochemist Severo Ochoa, M.D., who won the 1959 Nobel Prize for medicine or physiology, researchers have made an enzyme that can synthesize RNA. Following stops at Columbia University and Holy Name Hospital in Teaneck, N.J., Simbonis settled down at St. Joseph’s Hospital in Paterson, N.J., where he became chair of pathology. He retired in 1992 but remains an associate clinical professor of pathology at Columbia University’s College of Physicians and Surgeons. Since 1975 Simbonis has lived in a historic brownstone in Greenwich Village, New York City, where he is active in neighborhood preservation. For many years he also owned a vacation home on Fire Island, N.Y., which he recently donated to the medical school. The home will be sold and the proceeds divided between the library and a scholarship to be set up in his name.
Professorship (from page 6) of women’s health, today the initiative supports pilot studies, original research, training of women’s health researchers, and outreach to practitioners and the public.

“When he started his career, a number of his distinguished colleagues—Robert Alpern, Joan Lebson Bildner, Robert Bildner, a 1972 graduate of Yale College and a graduate of the University of Chicago, which she co-founded with her husband, Allen. ‘She made things happen. She embodied the Can- lyn Nazure makes things happen at WHRY,’” says Robert Bildner. “Says Elisa, ‘We could think of no better way to honor our mothers.’

In addition to grants from federal agencies, Rothman’s research has benefited from the long-term support of the National Institutes of Health (NIH), the Y. Mathers Charitable Foundation. Rothman graduated summa cum laude from Yale College in 1971, and earned a Ph.D. in biological chemistry from Harvard Medical School in 1976. After a postdoctoral fellowship in the lab of biochemist Harvey L. Lodish, Ph.D., at the Massachusetts Institute of Technology, he served on the faculties of Stanford School of Medicine, Princeton University, Memorial Sloan-Kettering Cancer Center and the Sloan-Kettering Institute in New York, and, most recently, Columbia University’s College of Physicians and Surgeons, where he was professor of physiology and biophysics, the Clyde and Helen Wu Professor of Chemical Biology, and director of the Columbia Genome Center.
Pioneering RNA researcher is elected a member of the National Academy of Sciences

Over and over in his 19-year career at Yale, Ronald R. Breaker, Ph.D., chair and Henry Ford II Professor of Molecular, Cellular and Developmental Biology, has transformed our understanding of RNA. Far from playing second fiddle to proteins in cellular machinery, Breaker has found, RNA can play an array of exotic biochemical roles—and may have even been in charge of cellular functions during the dawn of evolution. Breaker’s extensive contributions to our understanding of RNA biology have now garnered him a new honor: On April 30, he was elected to the National Academy of Sciences (NAS), a body representing the nation’s most prominent and productive researchers.

“Ron has always done outstanding science,” says Robert J. Alpern, M.D., dean and Ensign Professor of Medicine. “He’s a pioneer in defining new RNA functions within the cell.”

Science had long held that RNA simply carries information between DNA and protein-manufacturing ribosomes. Breaker, also professor of molecular biophysics and biochemistry, suspected early on that nucleic acids like RNA might be capable of more than we gave them credit for.

In 1998 Breaker opened a new era of molecular biology research when he synthesized the first RNA sequences that work as molecular switches. Soon afterward, he found the first such structures in nature, where they respond to metabolites and help determine which genes will be expressed. Some of these so-called “riboswitches” behave like enzymes, while others help bacteria process vitamins or even fend off fluoride—a great surprise, given that fluoride was not previously known to play much of a role in biological systems. RNA may also behave like an antibody or a complex machine. One RNA “machine” Breaker’s lab discovered demands the presence of two specific chemical signals before it removes itself from a messenger RNA.

By 2000 Breaker had also discovered the first RNA molecules, called “riboswitches,” that act as molecular logic gates. These RNA molecules can turn genes on or off in response to environmental conditions, such as pH or light.

“Ron has always done outstanding science,” says Robert J. Alpern, M.D., dean and Ensign Professor of Medicine. “He’s a pioneer in defining new RNA functions within the cell.”

Breaker’s research has revealed that RNA has a central role in biological systems. And his work has helped to transform our understanding of RNA’s role in evolution. Breaker’s findings have opened up new possibilities for developing new treatments for diseases such as cancer, diabetes, and bacterial infections.

Breaker has also co-founded two biotech startups, Archemix and BioRelix, to explore RNA’s therapeutic and diagnostic capabilities, including novel antibiotics that target bacterial riboswitches.

Breaker earned his B.S. at the University of Wisconsin-Stevens Point, and his Ph.D. at Purdue University. As a postdoctoral fellow at the Scripps Research Institute, he helped develop methods of driving evolution in the lab to find RNA enzymes. It was there that he and his colleagues created the first enzymes made of RNA.

A Howard Hughes Medical Institute investigator, Breaker has received fellowships from the Arnold and Mabel Beckman Foundation, the David and Lucile Packard Foundation, and the Hellman Family Trust, and has won the Arthur G.4er Great Memorial Prize, the Eli Lilly Award in Medical Microbiology, and the Molecular Biology Award from the NAS. He was named a fellow of the American Association for the Advancement of Science in 2004.

Founded during the Civil War in 1866 by an Act of Congress that was signed by Abraham Lincoln, the NAS is a non-profit organization whose goal is to advance science, technology, and medicine and serve as an independent advisor to the nation. The 105 new members and foreign affiliates named to the NAS this year include two other Yale faculty members: Xing-Wang Deng, Ph.D., Daniel C. Eaton Professor of Plant Biology in the department of molecular, cellular, and developmental biology; and David R. Mayhew, Ph.D., Sterling Professor of Political Science. All three will be inducted into the Academy during its April 2014 meeting in Washington, D.C.

Expert in human polycystic diseases receives American Society of Nephrology’s top honor

Stefan Somlo, M.D., the C.N.H. Long Professor of Medicine, professor of genetics, and chief of the Section of Nephrology in the Department of Medicine, has been named the 2013 recipient of the Homer W. Smith Award from the American Society of Nephrology. The award is presented annually to an individual whose achievements have fundamentally affected the science of nephrology.

Somlo’s laboratory studies the human polycystic diseases of the kidney and liver, with the goal of achieving understanding of basic mechanisms that will translate to development of specific treatments. Polycystic kidney disease affects more than 12 million individuals worldwide and causes progressive disruption of the normal structure and function of the kidney through growth of fluid-filled cysts. The most significant clinical consequence to patients is the loss of kidney function, necessitating renal replacement by dialysis or transplantation.

Somlo’s team has identified four of the genes responsible for these human diseases, and studied the functions of the protein products of these genes in cells and animal models. They have discovered the mechanisms by which mutations in these genes result in cyst formation, and have also defined the way in which these protein products work together to maintain normal kidney structure and function.

Somlo earned his B.A. at Harvard University and his M.D. at Columbia University’s College of Physicians and Surgeons. He completed his internship and residency in internal medicine at Albert Einstein College of Medicine, and a fellowship in nephrology at Yale School of Medicine (YSM).

The Homer W. Smith Award, established in 1964, is named after one of the major intellectual forces in renal physiology. Smith spent most of his career at New York University, where he developed and refined his concepts of glomerular filtration and tubular absorption and secretion of solutes. His findings and insights form the cornerstones of current understanding of renal function. His use of comparative approaches to explain normal human physiology stands as a model for students of biology and scientists attempting to unravel the mysteries of normal and disordered renal function.

Somlo joins a distinguished group of Yale faculty who have received the award. The previous Yale awardees include Peter S. Aronson, M.D., the C.N.H. Long Professor of Medicine and professor of cellular and molecular physiology; Walter F. Boron, M.D., Ph.D., professor of cellular and molecular physiology; pathologist and cellular biologist Marilyn Farquhar, Ph.D., who was on the YSM faculty from 1975 to 1990; Richard P. Lifton, M.D., Ph.D., chair and Sterling Professor of Genetics, professor of medicine, and a Howard Hughes Medical Institute investigator; the late Steven C. Hebert, M.D., chair and C.N.H. Long Professor of Cellular and Molecular Physiology and professor of medicine; Emilie Boulpaep, M.D., professor of cellular and molecular physiology; Gerhard H. Giebisch, M.D., professor emeritus of and senior research scientist in cellular and molecular physiology; and the late Robert W. Berliner, M.D., professor of cellular and molecular physiology and dean of YSM from 1973 to 1984.

Awards & Honors

Richard A. Flavell, Ph.D., chair and Sterling Professor of Immunobiology and a Howard Hughes Medical Institute investigator, has been elected the first president of the newly formed International Cytokine and Interferon Society (icis). The icis is a non-profit organization of more than 600 scientists who study interferon, cytokine, and chemokine cell biology, molecular biology, biochemistry, and the clinical and intercellular biological response modifiers. The society was formed this year through the merger of two existing organizations, the International Society for Interferon and Cytokine Research (isicr), and the International Cytokine Society.

Flavell received the Vilcek Prize in Biomedical Science from the isicr in 2013. He and colleagues have discovered several important receptors of the innate immune system, and he has made major contributions to our understanding of how activation of the innate system triggers the adaptive immune system’s more specialized responses.

Joan A. Steitz, Ph.D., Sterling Professor of Molecular Biophysics and Biochemistry and a Howard Hughes Medical Institute investigator, has been named the 2013 Grand Medal winner by the French Academy of Sciences. Each year, the Grand Medal, the Academy’s highest honor, is awarded to a French national or to a foreign scientist who has made “remarkable and decisive” contributions to his or her field. Steitz is best known for her pioneering work with non-coding RNA. With her student Michael Lerner, she discovered and later defined the contribution of small nucleicacoproteins (sncas) to the cellular process of making proteins. She is also recognized for her work encouraging women to pursue careers in science. Her honors include the National Medal of Science, the Gairdner Foundation International Award, the Lewis S. Rosenstiel Award for Distinguished Work in Basic Medical Research, and the E.B. Wilson Medal from the American Society for Cell Biology.